Test report

as supplement for the isCon ${ }^{\circledR}$ lightning protection system according to IEC/EN 62305-3 (VDE 0185-305-3)

Page 1 of 11

1. Testing type			
Acceptance test	Standard	Ex system	Paragraphs to be edited
Visual inspection	\square	\square	$1-14$
Comprehensive test	$\square(2$ years $)$	\square (1 year)	$1-8,12-14$
Individual test	$\square(4$ years $)$	$\square(2$ years $)$	$1-14$

2. Basic principles of the test (project documentation)

Lightning protection standards and regulations on the date of erection	
Date of erection	
Reference to standards	\square DIN EN 62305-3 (VDE (0185-305-3):2006; EN 62305-3:2006
	\square DIN EN 62305-3 (VDE 0185-305-3):2011; EN 62305-3
	\square DIN EN 62305-3 (VDE 0185-305-3) Supplement 1-5
	\square
Notes	

Project documentation				
Lightning protection class of the LPS	$\square \mathrm{I}$	\square II	$\square \mathrm{III}$	$\square \mathrm{IV}$
Change to the type of use/structural change to the building compared to the date of erection	Yes (protection of existing building possibly removed: Checking of the protection class of the LPS system)		No	
Complete drawing documentation of the lightning protection system available	\square Yes		\square No	
Drawing number				
Separation distance calculation available	$\square \mathrm{Yes}$		\square No	
Deviating installation compared to planning (e.g. positioning of the air-termination system):	\square Yes (Deviations must be documented)		\square No	
Wind load parameters available	$\square \mathrm{Yes}$		\square No	
Notes				

Page 2 of 11

3. General data on the isCon ${ }^{\circledR}$ lightning protection system

Used isCon ${ }^{\oplus}$ conductor
Note! The criteria for the selection are the calculated separation distance and the lightning protection class. Correct use of the isCon ${ }^{\oplus}$ lightning protection system is only guaranteed when the calculated separation distance s is \leq the equivalent separation distance of the isCon ${ }^{\oplus}$ conductor.

\square	isCon Professional $+75 \mathrm{SW}\left(\mathrm{s}_{\mathrm{e}} \leq 75 \mathrm{~cm}\right)$		
\square	isCon Professional + $75 \mathrm{GR}\left(\mathrm{s}_{\mathrm{e}} \leq 75 \mathrm{~cm}\right)$		
\square	isCon Premium ($\mathrm{s}_{\mathrm{e}} \leq 90 \mathrm{~cm}$)		
\square	isCon Professional 75 SW ($\mathrm{s}_{\mathrm{e}} \leq 75 \mathrm{~cm}$)		
\square	isCon Basic ($\mathrm{s}_{\mathrm{e}} \leq 45 \mathrm{~cm}$)		
Max. calculated separation distance $\mathrm{s}_{\text {Air }}$			
4. Checking of air-termination masts and accessories			
Air-termination mast/location designation:			
Visible damage on the air-termination mast		$\square \mathrm{Yes}$ (defect)	\square No
Bracket spacings - air-termination rod fastening - according to mounting specifications (e.g. wall mounting)		$\square \mathrm{Yes}$	\square No (defect)
Coloured coating in the GFK area of the air-termination mast		\square Yes (not permitted; system does not function)	\square No
Connection of the air-termination mast/tripod to the nearest equipotential bonding of the system ($\geq 6 \mathrm{~mm}^{2} \mathrm{CU}$ or equivalent conduction value)		$\square \mathrm{Yes}$	\square No (defect)
Correct number of concrete bases according to mounting specifications		$\square \mathrm{Yes}$	\square No (defect)
Use of approved components (terminals, holders) in Ex zone 1/21		$\square \mathrm{Yes}$	\square No (defect)
Continuation of the mounting materials of make OBO Bettermann		$\square \mathrm{Yes}$	$\square \mathrm{No}$ (defect)
Structure according to wind speed data		$\square \mathrm{Yes}$	$\square \mathrm{No}$ (defect)

Page 3 of 11

BETTERMANN

5. Checking of the isCon ${ }^{\oplus}$ conductor within/outside the air-termination mast as well as the accessories

Maintenance of separation distance in the area of termination

Note regarding interior routing! The area of termination (free of earthed metallic and electrically conductive parts) runs from the connection element through to the potential connection element installed in the air-termination mast and can be viewed from outside along the entire route of the GFK pipe. Around the termination, the calculated separation distance "s" to electrically conductive or earthed parts must be maintained. Observe the details in the current system instructions.
Note regarding exterior routing! Up to 4 isCon ${ }^{\oplus}$ conductors can be attached to the exterior of the air-termination mast. The area of the termination (free of earthed metallic and electrically conductive parts) runs from the connection element up to the 9272 6-K potential connection clip mounted on the air-termination mast. In the case of isCon Pro + conductors in light grey, the light grey jacketing must be removed in the area of the 92726 -K potential connection clip. Around the termination, the calculated separation distance "s" to electrically conductive or earthed parts must be maintained. Observe the details in the current system instructions.

Notes

Page 4 of 11

BETTERMANN
6. isCon ${ }^{\circledR}$ conductor routing within/outside the air-termination mast and in the further cable route

Is there clear labelling of the connection element and conductor?	\square Yes	$\square \mathrm{No}$ (defect)
isCon ${ }^{\circledR}$ conductor, light grey - internal air-termination mast Removal of the additional light grey jacketing in the area of the termination (potential connection element)	$\square \mathrm{Yes}$	$\square \mathrm{No}$ (defect)
isCon ${ }^{\circledR}$ conductor - external air-termination mast Shrinking of the connection elements - glue escape at both ends of the heat-shrinkable sleeve	$\square \mathrm{Yes}$	$\square \mathrm{No}$ (defect)
isCon ${ }^{\circledR}$ conductor, grey - external air-termination mast Removal of the additional light grey jacketing in the area of the 9272 6-K potential connection clip	$\square \mathrm{Yes}$	$\square \mathrm{No}$ (defect)
isCon ${ }^{\circledR}$ conductor - external air-termination mast Correct fixing of the OBO plastic cable ties	\square Yes	$\square \mathrm{No}$ (defect)
Bend radii of the isCon ${ }^{\circledR}$ conductor maintained according to the mounting specifications (minimum bend radius: $10 \times$ external diameter)	$\square \mathrm{Yes}$	$\square \mathrm{No}$ (defect)
No pressure/cut injuries to the isCon ${ }^{\circledR}$ conductor Note! Checking in the wall area (permanent position fixing) only required during acceptance checks.	$\square \mathrm{Yes}$	$\square \mathrm{No}$ (defect)
isCon ${ }^{\circledR}$ conductor - routing in Ex zone 1/21 Compliance with the mounting specifications (regular termination of the semi-conductive jacketing according to the mounting instructions)	$\square \mathrm{Yes}$	$\square \mathrm{No}$ (defect)
Maintenance of the minimum spacing of the isCon ${ }^{\circledR}$ conductor after the air-termination mast (distance < 200 mm)	$\square \mathrm{Yes}$	\square No (defect)
Cable routing only in impact-protected areas ($\mathrm{LPZ}_{\mathrm{B}}$)	\square Yes	$\square \mathrm{No}$ (defect)
Spacings of cable brackets in flat roof area (spacing a $<1.0 \mathrm{~m}$)	\square Yes	$\square \mathrm{No}$ (defect)
Spacings of cable brackets in wall area (spacing a < 1.0 m) Note! Only required during acceptance test.	\square Yes	$\square \mathrm{No}$ (defect)
Coloured coating of the isCon ${ }^{\circledR}$ conductor Note! Coloured adjustment only with isCon ${ }^{\oplus}$ conductor with light grey jacket after termination according to mounting specifications.	$\square \mathrm{YeS}$ (defect)	$\square \mathrm{No}$
Routing of isCon ${ }^{\oplus}$ conductors in a metal pipe after air-termination mast (if relevant)		
Routing within a metallic pipe is permitted beneath the termination.		
Routing of the isCon ${ }^{\circledR}$ conductor in a metallic pipe below the termination?	\square Yes (subsequent question)	\square No
Is the metallic pipe connected and to the earthing system?	$\square \mathrm{YeS}$ (see note)	\square No

Note! If cables, e.g. for power supply, are to be routed in parallel to the isCon ${ }^{\oplus}$ conductor (e.g. without a metallic duct), then inductive couplings into this system are possible. For this, the requirements and measures from VDE 0185-305-4 are to be observed. It is recommended to switch these cables with suitable surge protection devices. OBO isCon ${ }^{\oplus}$ can only prevent direct galvanic coupling through isolation (arcing).
Notes

Page 5 of 11

BETTERMANN
7. Connection of the isCon ${ }^{\oplus}$ conductor to separated ring conductor/parapet; separation distance $\mathrm{S}_{\text {Air }} \geq 17.5 \mathrm{~cm}^{*}$ or $\mathrm{S}_{\mathrm{Air}} \geq 20 \mathrm{~cm}^{* *}$ *isCon Pro, isCon Pro +, isCon Premium
**isCon Basic

Variable termination

If the isCon ${ }^{\oplus}$ conductor is not connected up to the earthing system but to parts subjected to lightning voltage (e.g. parapet, ring conductor), then the length of the variable termination is produced from the calculated separation distance in $\mathrm{s}_{\text {Air }}$ (exit point), multiplied by the factor 2.

Length of variable termination "L" = Separation distance in $\mathbf{s}_{\text {Air }} \mathbf{x} 2$

Note!

- The additional light grey jacket of the isCon ${ }^{\oplus}$ conductor must be removed under the potential connection element. Observe the mounting details in the current system instructions.
- With the isCon ${ }^{\oplus}$ Basic conductor, there is no need for the termination if there are no earthed or electrically conductive elements located between the last insulated spacer and the connection element and before the last insulated spacer within the radius of the separation distance on a path of $2 x s_{\text {Air }}$

Connection of the air-termination masts to the equipotential bon- ding using natural components (e.g. antenna bracket, air-conditio- ning devices, etc.)	\square Yes (subsequent questions can be ignored)	\square No
Connection via	\square Yes	\square No
Connection of the air-termination rods/tripods via special PC cable $\left(6 \mathrm{~mm}^{2} \mathrm{CU}\right.$ or equally conductive)	\square Yes (observe note)	\square No
Parallel routing of EB cable up to isCon ${ }^{\circledR}$ conductor		

Notes

Note! The isCon ${ }^{\oplus}$ conductor is a component for maintaining the separation distance. This does not possess a magnetic shield effect on account of its construction. The induction effect in secondary cables/loops should be observed. If necessary, surge protection measures should be included.

Page 6 of 11

BETTERMANN
9. Function testing Part 1: Continuity

The continuity of an isCon ${ }^{\oplus}$ conductor can be measured between the infeed/exit point and, in the case of a meshed isCon ${ }^{\oplus}$ system, between the exit points. A low-impedance pass $<1.0 \Omega$ is recommended.

Measuring device				
Measuring current				
Measuring cable	Length		R	
Measuring cable 1				
Measuring cable 2				
Measuring cable 3				
Measuring cable 4				
Measuring cable 5				
Measurement results	Resistance R			
	Measured value (total)	Measuring cables	Measured value (isCon)	Length
Separator				

Notes

Page 7 of 11

10. Function testing Part 2: Insulation

The main task of a high-voltage-resistant, insulated conductor is insulation. The function testing Parts $2+3$ can only be performed using the isCon ${ }^{\circledR}$ connection element with ASE technology (Adaptive Switching Element). If no appropriate OBO connection element is installed, we recommend exchanging the connection element, in order to be able to inspect the function of the isCon ${ }^{\circledR}$ conductor according to the standard. Perform the function testing according to the current isCon ${ }^{\oplus}$ system instructions.
The measured values must be in the $G \Omega$ range.

| Measuring device | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | The tolerance data of the measuring device must be obsered. In necessar, the actual measured voltage must be checked with a multineter. | | | |

Notes

Page 8 of 11

BETTERMANN

11. Function testing Part 3: Testing of connection elements

Before final mounting and if a defect is detected after the 2nd function test (insulation), we recommend a measurement check of the connection elements. The connection elements are tested at a measured voltage $\geq 1,000 \mathrm{~V}$ DC and at a measured voltage $<500 \mathrm{~V}$ DC:

- Measured voltage $\geq 1,000 \mathrm{~V}$ DC: Varying value $<\mathrm{G} \Omega^{*}=$ function given, value $\mathrm{G} \Omega=$ defect
- Measured voltage < 500 V DC: $\mathrm{G} \Omega=$ function given, value $<\mathrm{G} \Omega=$ defect

Measuring
device
The tolerance data of the measuring device must be observed. If necessary, the actual measured voltage must be checked with a multimeter.
Measurement results:

Measuring point/separation point			Measured value ($3-5 \mathrm{sec}$. after the setting of a	Defect?	
	Connection element 1	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	\square No
		Measuring voltage < 500 V DC		\square Yes	No
	Connection element 2	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		$\square \mathrm{Yes}$	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 1	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		$\square \mathrm{Yes}$	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 2	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 1	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 2	Measuring voltage $\geq 1,000 \mathrm{~V} \mathrm{DC}$		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 1	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 2	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 1	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	\square No
	Connection element 2	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 1	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 2	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 1	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	$\square \mathrm{No}$
		Measuring voltage < 500 V DC		\square Yes	$\square \mathrm{No}$
	Connection element 2	Measuring voltage $\geq 1,000 \mathrm{~V}$ DC		\square Yes	\square No
		Measuring voltage < 500 V DC		\square Yes	\square No

*Due to the special ASE technology, the measured value may vary during the switching operation, depending on the measuring device.

Page 9 of 11

BETTERMANN
\qquad

Page 10 of 11

Next inspection date

Systems

14. Notes for the system operator

The operator must ensure that any defects found are rectified.
The necessity of additional measures for internal lightning protection must be checked.
If structural changes are made or there is a lightning strike, then the lightning protection system must be maintained immediately by a specialist technician.
This test report does not represent comprehensive testing in the sense of the standard. Additional inspections are required, e.g. on the earthing system.

		Company/stamp
City/town	Date	

signature

Page 11 of 11

